Difference between revisions of "Obvio"

From Knoesis wiki
Jump to: navigation, search
(Automatic Subgraph Creation)
(RS-DFO Hypothesis)
 
(222 intermediate revisions by 3 users not shown)
Line 1: Line 1:
'''Obvio''' (''spanish for obvious'') is the name of the project on the use of structured knowledge representation for Literature-Based Discovery (LBD) using Biomedical Literature. The goal of Obvio is to uncover hidden connections between concepts in biomedical texts, to facilitate hypothesis generation from publicly available scientific literature.
+
'''Obvio''' (''spanish for obvious'') is a graph-based framework for exploring biomedical literature to facilitate [http://en.wikipedia.org/wiki/Literature-based_discovery Literature-Based Discovery (LBD)] based on rich knowledge representations. Its broader goal is to uncover hidden and complex associations between concepts in biomedical texts. To achieve this, Obvio utilizes several tools and resources developed at the [http://www.nlm.nih.gov/ National Library of Medicine] (NIH-NLM), including [http://metamap.nlm.nih.gov/ MetaMap], [http://semrep.nlm.nih.gov/ SemRep], [http://www.nlm.nih.gov/pubs/factsheets/medline.html MEDLINE], [http://skr3.nlm.nih.gov/SemMedDB/ SemMedDB], [http://www.nlm.nih.gov/mesh/ MeSH], [http://www.nlm.nih.gov/research/umls/ UMLS], [http://mor.nlm.nih.gov/pubs/pres/20070625-NIAID.pdf BKR] and the [http://mor.nlm.nih.gov/ UMLS Semantic Navigator]. Obvio has resulted in the rediscovery of 8 out of 9 existing discoveries from scientific literature. The  project encapsulates the PhD Dissertation<ref><b>[http://knoesis.wright.edu/students/delroy D. Cameron]</b>, [http://knoesis.org/library/resource.php?id=2007 A Context-Driven Subgraph Model for Literature-Based Discovery], Ph.D. Thesis, Wright State University, 2014</ref> ([http://bit.ly/delroyphddefense video] on YouTube) by [http://knoesis.wright.edu/researchers/delroy/ Delroy Cameron], presented on August 18, 2014.
 
+
=Overview=
+
Obvio is driven by assertions extracted from structured text (called ''semantic predications'') as well as assertions obtained from structured knowledge sources (such as the UMLS). The fundamental notion is that LBD could be greatly facilitated by the Semantic Integration of assertions extracted from scientific literature and well curated background knowledge from heterogeneous data sources.
+
  
 
=People=
 
=People=
Graduate Students: [http://knoesis.wright.edu/researchers/delroy/ Delroy Cameron], [http://knoesis.wright.edu/researchers/swapnil/ Swapnil Soni], [http://knoesis.wright.edu/researchers/Nishita/ Nishita Jaykumar], Vishnu Bompally<br />
+
Graduate Students: [http://knoesis.wright.edu/researchers/delroy/ Delroy Cameron], [http://knoesis.wright.edu/researchers/swapnil/ Swapnil Soni], [http://knoesis.wright.edu/researchers/Nishita/ Nishita Jaykumar], [http://knoesis.wright.edu/researchers/Vishnu/ Vishnu Bompally]<br />
External Collaborators: [http://mor.nlm.nih.gov/ Olivier Bodenreider], [http://www.lhncbc.nlm.nih.gov/personnel/thomas-rindflesch Thomas C. Rindflesch], [http://www.cs.uky.edu/people/faculty/rkavuluru Ramakanth Kavuluru]<br />
+
External Collaborators: [http://www.lhncbc.nlm.nih.gov/personnel/thomas-rindflesch Thomas C. Rindflesch], [http://www.cs.uky.edu/people/faculty/rkavuluru Ramakanth Kavuluru], [http://mor.nlm.nih.gov/ Olivier Bodenreider] <br />
Faculty: [http://knoesis.wright.edu/tkprasad/ Krishnaprasad Thirunarayan], [http://knoesis.wright.edu/amit Amit P. Sheth] (Advisor)<br />
+
Faculty: [http://knoesis.wright.edu/amit Amit P. Sheth] (Advisor), [http://knoesis.wright.edu/tkprasad/ Krishnaprasad Thirunarayan]<br />
 
Past Members: [http://pablomendes.com Pablo N. Mendes], Tu Danh, Sreeram Vallabhaneni, Hima Yalamanchili, Drashti Dave<br />
 
Past Members: [http://pablomendes.com Pablo N. Mendes], Tu Danh, Sreeram Vallabhaneni, Hima Yalamanchili, Drashti Dave<br />
  
=Live Demo=
+
=PhD Dissertation=
http://knoesis-hpco.cs.wright.edu/obvio/
+
Obvio was presented as the core of the PhD Dissertation by Delroy Cameron in the Summer 2014. The [https://www.youtube.com/watch?v=3zuCYjSV0b8&list=UUORqXk1ZV44MOwpCorAROyQ dissertation defense] (and  [https://www.youtube.com/watch?v=Y4ZH4xRtGPg&list=UUORqXk1ZV44MOwpCorAROyQ dissertation proposal]) videos are available on YouTube. The dissertation presentation is also available on SlideShare.
  
=Applications=
+
{{#widget:SlideShare
<!--
+
|id=38146507
There are four notable research applications of semantic predications. These include:
+
|width=425
# Information Retrieval (IR)
+
|height=355
# Question Answering (QA)
+
}}
# Automatic Summarization
+
<br />
# Literature-based Discovery (LBD)
+
 
-->
+
=Overview=
 +
Obvio is driven by assertions extracted from biomedical literature (called ''semantic predications'') as well as statements obtained from structured knowledge sources (such as the UMLS and MeSH). Semantic predications are extracted from MEDLINE using [http://semrep.nlm.nih.gov/ SemRep] and made publicly available through the Semantic MEDLINE Database ([http://skr3.nlm.nih.gov/SemMedDB/ SemMedDB]). These semantic predications can be used for various tasks. Some of these include: 1) Information Retrieval; 2) Question Answering (QA); 3) Document Summarization and 4) Literature-Based Discovery (LBD). Obvio uses the semantic predications specifically for '''Question Answering''' and  '''LBD'''.
 +
 
 +
=Question Answering=
  
 
===Reachability===
 
===Reachability===
We applied semantic predications to biomedical QA using data from the 2006 TREC  Challenge using the notion of reachability to determine whether documents that answer complex biomedical questions could be connected through semantic predications, together with background knowledge<ref>'''[http://knoesis.wright.edu/students/delroy D. Cameron]''', [http://www.cs.uky.edu/people/faculty/rkavuluru R. Kavuluru], [http://mor.nlm.nih.gov/ O. Bodenreider], [http://pablomendes.com/ P. N. Mendes], [http://knoesis.wright.edu/amit A. P. Sheth], [http://knoesis.wright.edu/tkprasad/ K. Thirunarayan], [http://knoesis.org/library/resource.php?id=1577 Semantic Predications for Complex Information Needs in Biomedical Literature], [http://www.cs.gsu.edu/BIBM2011/ 5th International Conference on Bioinformatics and Biomedicine BIBM2011], Atlanta GA, November 12-15, 2011 ''(acceptance rate=19.4%)''</ref>. The QA tasks put forth by the Text REtrieval Conferences (TREC) offer an opportunity to determine whether semantic predications and background knowledge can produce relevant ''information'' for complex biomedical questions and information needs. Below is our presentation from [http://www.cs.gsu.edu/BIBM2011/ BIBM 2011] on our findings for the application of semantic predications and background knowledge to QA.
+
Semantic predications were first used in Obvio for biomedical QA based on data from the 2006 TREC  Challenge. The approach was based on the notion of reachability, to determine whether documents that answer complex biomedical questions could be meaningfully connected using assertions from the literature. Structured background knowledge was used to gain additional insights to connect biomedical texts, when semantic predications alone proved insufficient. The presentation below, together with our paper<ref>'''[http://knoesis.wright.edu/students/delroy D. Cameron]''', [http://www.cs.uky.edu/people/faculty/rkavuluru R. Kavuluru], [http://mor.nlm.nih.gov/ O. Bodenreider], [http://pablomendes.com/ P. N. Mendes], [http://knoesis.wright.edu/amit A. P. Sheth], [http://knoesis.wright.edu/tkprasad/ K. Thirunarayan], [http://knoesis.org/library/resource.php?id=1577 Semantic Predications for Complex Information Needs in Biomedical Literature], [http://www.cs.gsu.edu/BIBM2011/ 5th International Conference on Bioinformatics and Biomedicine (BIBM2011)], Atlanta GA, November 12-15, 2011 ''(acceptance rate=19.4%)''</ref> in [http://www.cs.gsu.edu/BIBM2011/ BIBM 2011] on applying predications and background knowledge for QA, provide more details on this approach.  
  
 
{{#widget:SlideShare
 
{{#widget:SlideShare
|doc=cameron-bibm2011-120217122640-phpapp02
+
|id=11638905
 
|width=425
 
|width=425
 
|height=355
 
|height=355
 
}}
 
}}
  
 +
=Literature-Based Discovery (LBD)=
 
===Rediscovery===
 
===Rediscovery===
A second application of semantic predications is to the field of Literature-based Discovery (LBD). LBD refers to uncovering conclusions that have never been made explicit before, but are implicit in publicly available literature. Semantic predications have been demonstrated to be important constructs in facilitating LBD by providing context among associated concepts.  
+
The semantic predications were subsequently used for Literature-based Discovery (LBD). Specifically, they were used to determine whether existing knowledge from scientific literature, could be effectively recovered. We developed a graph-based approach that was successfully applied to rediscover and decompose [http://en.wikipedia.org/wiki/Don_R._Swanson Don R. Swanson's] ''[http://www.ncbi.nlm.nih.gov/pubmed/3797213 Raynaud Syndrome - Dietary Fish Oils Hypothesis] (RS-DFO)'' from 1986. Much of the early research aimed at rediscovering Swanson's Hypotheses focused on distributional statistics and Information Retrieval (IR) techniques, such as term and concept co-occurrence to find intermediates. Only recently has significant attention been devoted to semantics-based techniques that exploit the meaning of associations between concepts. While generally more intuitive, the feasibility of such semantics-based approaches has not been fully established. Our article published in JBI<ref>'''[http://knoesis.wright.edu/students/delroy D. Cameron]''', [http://mor.nlm.nih.gov/ O. Bodenreider], H. Yalamanchili, T. Danh, S. Vallabhaneni, [http://knoesis.wright.edu/tkprasad/ K. Thirunarayan], [http://knoesis.wright.edu/amit A. P. Sheth], [http://www.lhncbc.nlm.nih.gov/personnel/thomas-rindflesch T. C. Rindflesch], [http://knoesis.org/library/resource.php?id=1690 A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications], [http://www.journals.elsevier.com/journal-of-biomedical-informatics/ Journal of Biomedical Informatics] 46(2): 238-251, (2013). [http://dx.doi.org/10.1016/j.jbi.2012.09.004 ScienceDirect], [http://www.ncbi.nlm.nih.gov/pubmed/23026233 PMID] </ref> shows that semantics-based techniques can effectively be used for recovering and decomposing Swanson's ''Raynaud Syndrome-Fish Oil'' hypothesis using semantic predications,  background knowledge and graph algorithms. It is reasonable to expect that if semantics-based techniques are adequate for rediscovering existing knowledge, they ought to be sufficient for discovering new knowledge.  
  
 
====RS-DFO Hypothesis====
 
====RS-DFO Hypothesis====
Much of the early research aimed at rediscovering Swanson's Hypotheses focused almost entirely on Information Retrieval (IR) techniques, such as term and concept co-occurrence. Only recently has significant attention been devoted to semantics-based techniques that exploit the meaning of associations between concepts. While generally more intuitive, the feasibility of such semantics-based approaches has not been fully established. It is reasonable to expect that if semantics-based techniques are adequate for discovering new knowledge, they ought to be sufficient for recovering existing knowledge.
+
The following presentation gives more details about the approach for knowledge rediscovery and decomposition. Various datasets and experimental results are also provided.
 
+
In this work<ref>'''[http://knoesis.wright.edu/students/delroy D. Cameron]''', [http://mor.nlm.nih.gov/ O. Bodenreider], H. Yalamanchili, T. Danh, S. Vallabhaneni, [http://knoesis.wright.edu/tkprasad/ K. Thirunarayan], [http://knoesis.wright.edu/amit A. P. Sheth], [http://www.lhncbc.nlm.nih.gov/personnel/thomas-rindflesch T. C. Rindflesch], [http://knoesis.org/library/resource.php?id=1690 A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications], [http://www.journals.elsevier.com/journal-of-biomedical-informatics/ Journal of Biomedical Informatics] 46(2) 238-251, (2013). [http://dx.doi.org/10.1016/j.jbi.2012.09.004 ScienceDirect], [http://www.ncbi.nlm.nih.gov/pubmed/23026233 PMID] </ref> we investigate the applicability of semantics-based techniques for recovering and decomposing Swanson's ''Raynaud Syndrome--Fish Oil'' hypothesis using semantic predications,  background knowledge and graph-based algorithms for path extraction and subgraph creation. Below is a presentation, and various datasets and experimental results for download and consumption based on our investigation.
+
 
+
  
 
{{#widget:SlideShare
 
{{#widget:SlideShare
|doc=swanson-rfo-pres-grp-mtg-120221170046-phpapp02
+
|id=11695826
 
|width=425
 
|width=425
 
|height=355
 
|height=355
Line 75: Line 73:
 
Another application of semantic predications is to the field of Information Retrieval. By modeling documents as a collection of predications (i.e., a subgraph), and modeling a search query as a subgraph as well, documents can be ranked based on their semantic similarity to the search query using subgraph-to-subraph query analysis.
 
Another application of semantic predications is to the field of Information Retrieval. By modeling documents as a collection of predications (i.e., a subgraph), and modeling a search query as a subgraph as well, documents can be ranked based on their semantic similarity to the search query using subgraph-to-subraph query analysis.
 
-->
 
-->
 +
 +
The main limitation of the approach for rediscovery and decomposition using semantic predications is that subgraphs were created manually. An approach to automatically cluster paths based on a specification of context, was developed. The next section provides details on this approach for automatic subgraph creation.
  
 
==Automatic Subgraph Creation==
 
==Automatic Subgraph Creation==
In an evaluation of the context-driven subgraph model for LBD, 8 out of 9 existing discoveries were rediscovered  using this approach. A manuscript detailing the approach is under preparation
+
Following our experiments on knowledge rediscovery, the semantic predications were used to automatically generate subgraphs, which capture complex associations between two concepts<ref>'''[http://knoesis.wright.edu/students/delroy D. Cameron]''', [http://www.cs.uky.edu/people/faculty/rkavuluru R. Kavuluru], [http://www.lhncbc.nlm.nih.gov/personnel/thomas-rindflesch T. C. Rindflesch], [http://knoesis.wright.edu/amit A. P. Sheth], [http://knoesis.wright.edu/tkprasad/ K. Thirunarayan], [http://mor.nlm.nih.gov/ O. Bodenreider], [http://knoesis.org/library/resource.php?id=2035 Context-Driven Automatic Subgraph Creation for Literature-Based Discovery]. [http://www.journals.elsevier.com/journal-of-biomedical-informatics/ Journal of Biomedical Informatics] 54: 141-157 (2015) </ref> (i.e., closed discovery). We developed a method that creates complex associations in the form of subgraphs along different thematic dimensions of association between such concepts. The generated subgraphs were shown to facilitate the rediscovery of 8 out of 9 existing scientific discoveries, including the RS-DFO scenarios from our article in JBI. Each rediscovery scenario is covered in detail in the following tables. The associations from each subgraph in each rediscovery scenario, can be explored using our live web application: http://knoesis-hpco.cs.wright.edu/obvio/ and a [http://youtu.be/B-4gUelLJnc video demo] is also available online.
<ref>'''[http://knoesis.wright.edu/students/delroy D. Cameron]''', [http://www.cs.uky.edu/people/faculty/rkavuluru R. Kavuluru], [http://www.lhncbc.nlm.nih.gov/personnel/thomas-rindflesch T. C. Rindflesch], [http://knoesis.wright.edu/amit A. P. Sheth], [http://knoesis.wright.edu/tkprasad/ K. Thirunarayan], [http://mor.nlm.nih.gov/ O. Bodenreider] Context-Driven Automatic Subgraph Creation for Literature-Based Discovery <i>(<font color="red">under preparation</font>)</i></ref> The results of each scenario is detailed in the following table.
+
 
 +
<b>Legend</b>
 +
{| border="1"
 +
|-
 +
!style="background: red; width: 75px" | &nbsp;
 +
| Not Found
 +
|-
 +
!style="background: green; width: 75px" | &nbsp;
 +
| Found
 +
|-
 +
| subgraph x
 +
| x (subgraph number)
 +
|-
 +
| singleton y
 +
| y (singleton number), where a singleton is a subgraph consisting of only one path
 +
|-
 +
| zero rarity singleton
 +
| a single-path subgraph (or singleton) whose concepts never occur together in any article in MEDLINE
 +
|-
 +
|}
 +
<br />
  
 
{| border="1"
 
{| border="1"
 
|-
 
|-
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 1
+
! colspan="3" style="background: #7109AA; color: #ffffff" | Scenario 1
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "1" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="3" | Dietary Fish Oils
+
! rowspan="3" | [http://en.wikipedia.org/wiki/Fish_oil Dietary Fish Oils]
 
! rowspan="3" | [http://en.wikipedia.org/wiki/Raynaud's_phenomenon Raynaud Syndrome]
 
! rowspan="3" | [http://en.wikipedia.org/wiki/Raynaud's_phenomenon Raynaud Syndrome]
! rowspan="3" | November 1985
+
! rowspan="3" | Cut-off Date: November 1985<br />
! rowspan="3" |  Don R. Swanson ([http://www.ncbi.nlm.nih.gov/pubmed/3797213 PubMed])
+
By: Don R. Swanson <br />
 +
Article: ([http://www.ncbi.nlm.nih.gov/pubmed/3797213 PubMed])
 
| [http://en.wikipedia.org/wiki/Hemorheology Blood Viscosity]
 
| [http://en.wikipedia.org/wiki/Hemorheology Blood Viscosity]
 
| <i>Dietary Fish Oils INHIBITS Blood Viscosity</i>
 
| <i>Dietary Fish Oils INHIBITS Blood Viscosity</i>
 
| <i>Blood Viscosity CAUSES Raynaud Syndrome</i>
 
| <i>Blood Viscosity CAUSES Raynaud Syndrome</i>
! style="background: green"  | zero rarity
+
! style="background: green"  | zero rarity singleton15
 
|-
 
|-
 
| [http://en.wikipedia.org/wiki/Platelet#Aggregation Platelet Aggregation]
 
| [http://en.wikipedia.org/wiki/Platelet#Aggregation Platelet Aggregation]
Line 106: Line 126:
 
! style="background: green"  | subgraph1
 
! style="background: green"  | subgraph1
 
|-
 
|-
| [http://en.wikipedia.org/wiki/Vasoconstriction Vascular Reactivity] (Vasoconstriction)
+
| [http://en.wikipedia.org/wiki/Vasoconstriction Vascular Reactivity]
 
| <i>Dietary Fish Oils INHIBITS Vasoconstriction</i>
 
| <i>Dietary Fish Oils INHIBITS Vasoconstriction</i>
 
| <i>Vasoconstriction CAUSES Raynaud Syndrome</i>
 
| <i>Vasoconstriction CAUSES Raynaud Syndrome</i>
Line 112: Line 132:
 
|-
 
|-
 
|}
 
|}
 
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
{| border="1"
 
{| border="1"
 
|-
 
|-
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 2
+
! colspan="3" style="background: #7109AA; color: #ffffff" | Scenario 2
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "1" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="12" | Magnesium
+
! rowspan="12" | [http://en.wikipedia.org/wiki/Magnesium Magnesium]
! rowspan="12" | Migraine
+
! rowspan="12" | [http://en.wikipedia.org/wiki/Migraine Migraine]
! rowspan="12" | April 1987
+
! rowspan="12" | Cut-off Date: April 1987 <br />
! rowspan="12" |  Don R. Swanson
+
By: Don R. Swanson <br />
 +
Article: ([http://www.ncbi.nlm.nih.gov/pubmed/3075738 Pubmed Central])
 
|-
 
|-
| Calcium Channel Blockers
+
| [http://en.wikipedia.org/wiki/Calcium_channel_blocker Calcium Channel Blockers]
 
| ''Magnesium ISA Calcium Channel Blocker''
 
| ''Magnesium ISA Calcium Channel Blocker''
 
| ''Calcium Channel Blockers TREATS Migraine''
 
| ''Calcium Channel Blockers TREATS Migraine''
 
! style="background: green"  | subgraph22
 
! style="background: green"  | subgraph22
 
|-
 
|-
| Epilepsy
+
| [http://en.wikipedia.org/wiki/Epilepsy Epilepsy]
| &nbsp;
+
| ''Magnesium AFFECTS Epilepsy''
| &nbsp;
+
| ''Epilepsy COEXISTS_WITH Migraine''
 
! style="background: green"  | subgraph9
 
! style="background: green"  | subgraph9
 
|-
 
|-
| Hypoxia
+
| [http://en.wikipedia.org/wiki/Hypoxia_(medical) Hypoxia]
| &nbsp;
+
| ''Magnesium INHIBITS Hypoxia''
| &nbsp;
+
| ''Hypoxia ASSOCIATED_WITH Migraine''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Inflammation
+
| [http://en.wikipedia.org/wiki/Inflammation Inflammation] (Brain Edema, Hydrocephalus)
| &nbsp;
+
| ''Magnesium INHIBITS Inflammation''
| &nbsp;
+
| ''Inflammation CAUSES Migraine''
! style="background: green"  | zero rarity
+
! style="background: green"  | zero rarity singleton3
 
|-
 
|-
| Platelet Activity
+
| [http://en.wikipedia.org/wiki/Platelet#Activation Platelet Activity]
 
| ''Magnesium INHIBITS Platelet Aggregation''
 
| ''Magnesium INHIBITS Platelet Aggregation''
 
| ''Platelet Aggregation CAUSES Migraine''
 
| ''Platelet Aggregation CAUSES Migraine''
 
! style="background: green"  | subgraph1
 
! style="background: green"  | subgraph1
 
|-
 
|-
| Prostaglandins
+
| [http://en.wikipedia.org/wiki/Prostaglandin Prostaglandins]
 
| ''Magnesium STIMULATES Prostaglandins''
 
| ''Magnesium STIMULATES Prostaglandins''
 
| ''Prostaglandins DISRUPTS Migraine Disorders''
 
| ''Prostaglandins DISRUPTS Migraine Disorders''
 
! style="background: green"  | subgraph4
 
! style="background: green"  | subgraph4
 
|-
 
|-
| Type A Personality
+
| [http://en.wikipedia.org/wiki/Type_A_and_Type_B_personality_theory#Type_A Stress/Type A Personality]
| &nbsp;
+
| ''Stress INHIBITS Magnesium''
| &nbsp;
+
| ''Stress ASSOCIATED_WITH Migraine''
 
! colspan="2"  style="background: red"  | &nbsp;
 
! colspan="2"  style="background: red"  | &nbsp;
 
|-
 
|-
| Serotonin
+
| [http://en.wikipedia.org/wiki/Serotonin Serotonin]
 
| ''Magnesium INHIBITS Serotonin''
 
| ''Magnesium INHIBITS Serotonin''
 
| ''Serotonin CAUSES Migraine''
 
| ''Serotonin CAUSES Migraine''
 
! style="background: green"  | subgraph1
 
! style="background: green"  | subgraph1
 
|-
 
|-
| Cortical Depression
+
| [http://en.wikipedia.org/wiki/Cortical_spreading_depression Cortical Depression]
| &nbsp;
+
| ''Magnesium INHIBITS Spreading Cortical Depression''
| &nbsp;
+
| ''Spreading Cortical Depression CAUSES Migraine''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Substance P
+
| [http://en.wikipedia.org/wiki/Substance_P Substance P]
| &nbsp;
+
| ''Magnesium INHIBITS Substance P''
| &nbsp;
+
| ''Substance P CAUSES Migraine''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Vascular Mechanisms
+
| [http://en.wikipedia.org/wiki/Vasoconstriction Vascular Mechanisms]
 
| ''Magnesium INHIBITS Vasoconstriction''
 
| ''Magnesium INHIBITS Vasoconstriction''
 
| ''Vasoconstriction CAUSES Migraine''
 
| ''Vasoconstriction CAUSES Migraine''
Line 187: Line 206:
 
|-
 
|-
 
|}
 
|}
 
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 3
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 3
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="4" | Somatomedin C
+
! rowspan="4" | [http://en.wikipedia.org/wiki/Insulin-like_growth_factor_1 Somatomedin C]
! rowspan="4" | Arginine
+
! rowspan="4" | [http://en.wikipedia.org/wiki/Arginine Arginine]
 
! rowspan="4" | April 1989
 
! rowspan="4" | April 1989
! rowspan="4" |  Don R. Swanson
+
! rowspan="4" |  Don R. Swanson ([http://www.ncbi.nlm.nih.gov/pmc/articles/PMC225324/ Pubmed Central])
| Growth Hormone
+
| [http://en.wikipedia.org/wiki/Growth_hormone Growth Hormone]
 
| ''Arginine STIMULATES Growth Hormone''
 
| ''Arginine STIMULATES Growth Hormone''
 
| ''Growth Hormone STIMULATES Somatomedins''
 
| ''Growth Hormone STIMULATES Somatomedins''
! style="background: green"  | subgraph1
+
! style="background: green"  | subgraph5
 
|-
 
|-
| Body Weight
+
| [http://en.wikipedia.org/wiki/Body_weight Body Weight]  (body mass)
| ''Somatomedins (IGF1) STIMULATES Growth (body mass)''
+
| ''Somatomedins (IGF1) STIMULATES Growth''
| ''Arginine STIMULATES Growth (body mass)''
+
| ''Arginine STIMULATES Growth''
! style="background: green"  | subgraph1
+
! style="background: green"  | subgraph7
 
|-
 
|-
| Somatomedins
+
| [http://en.wikipedia.org/wiki/Malnutrition Malnutrition]
 +
| ''Somatomedins TREATS Malnutrition''
 
| ''Arginine TREATS Malnutrition''
 
| ''Arginine TREATS Malnutrition''
| ''Arginine TREATS Malnutrition''
+
! style="background: green"  | subgraph7
! style="background: red"  | &nbsp;
+
 
|-
 
|-
| Wound Healing
+
| [http://en.wikipedia.org/wiki/Wound_healing Wound Healing] (NK activity)
| ''Somatomedin STIMULATES Wound Healing (NK activity)''
+
| ''Somatomedin STIMULATES Wound Healing''
| ''Arginine STIMULATES Wound Healing (NK activity)''
+
| ''Arginine STIMULATES Wound Healing''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
 
|}
 
|}
 
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 4
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 4
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="8" | Indomethacin
+
! rowspan="7" | [http://www.nlm.nih.gov/medlineplus/druginfo/meds/a681027.html Indomethacin]
! rowspan="8" | Alzheimer’s Disease
+
! rowspan="7" | [http://en.wikipedia.org/wiki/Alzheimer's_disease Alzheimer’s Disease]
! rowspan="8" | July 1995
+
! rowspan="7" | July 1995
! rowspan="8" |  Neil R. Smalheiser/Don R. Swanson
+
! rowspan="7" |  Neil R. Smalheiser/Don R. Swanson ([http://www.neurology.org/content/46/2/583.1.short J. Neurol])
| Acetylcholine
+
| [http://en.wikipedia.org/wiki/Acetylcholine Acetylcholine]
 
| ''Indomethacin INHIBITS Acetylcholine''
 
| ''Indomethacin INHIBITS Acetylcholine''
 
| ''Acetylcholine CAUSES Alzheimer's Disease''
 
| ''Acetylcholine CAUSES Alzheimer's Disease''
 
! style="background: green"  | subgraph4
 
! style="background: green"  | subgraph4
 
|-
 
|-
| Lipid peroxidation
+
| [http://en.wikipedia.org/wiki/Lipid_peroxidation Lipid peroxidation]
 
| ''Indomethacin INHIBITS Lipid peroxidation''
 
| ''Indomethacin INHIBITS Lipid peroxidation''
 
| ''Lipid peroxidation CAUSES Alzheimer's Disease''
 
| ''Lipid peroxidation CAUSES Alzheimer's Disease''
 
! style="background: green"  | subgraph2
 
! style="background: green"  | subgraph2
 
|-
 
|-
| M2-muscarinic
+
| [http://en.wikipedia.org/wiki/Muscarinic_acetylcholine_receptor_M2 M2-muscarinic]
 
| ''Indomethacin INHIBITS M2-muscarinic''
 
| ''Indomethacin INHIBITS M2-muscarinic''
 
| ''M2-muscarinic CAUSES Alzheimer's Disease''
 
| ''M2-muscarinic CAUSES Alzheimer's Disease''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Membrane Fluidity
+
| [http://en.wikipedia.org/wiki/Membrane_fluidity Membrane Fluidity]
 
| ''Indomethacin INHIBITS Membrane Fluidity''
 
| ''Indomethacin INHIBITS Membrane Fluidity''
 
| ''Membrane Fluidity CAUSES Alzheimer's Disease''
 
| ''Membrane Fluidity CAUSES Alzheimer's Disease''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Lymphocytes
+
| [http://en.wikipedia.org/wiki/Lymphocyte Lymphocytes]
 
| ''Indomethacin STIMULATES natural killer T-Cell Activity''
 
| ''Indomethacin STIMULATES natural killer T-Cell Activity''
 
| ''T-Cell Activity INHIBITS Alzheimer's Disease''
 
| ''T-Cell Activity INHIBITS Alzheimer's Disease''
 
! style="background: green"  | subgraph14
 
! style="background: green"  | subgraph14
 
|-
 
|-
| Thyrotropin
+
| [http://en.wikipedia.org/wiki/Thyrotropin-releasing_hormone Thyrotropin]
 
| ''Indomethacin STIMULATES Thyrotropin''
 
| ''Indomethacin STIMULATES Thyrotropin''
 
| ''Thyrotropin AFFECTS Alzheimer's Disease''
 
| ''Thyrotropin AFFECTS Alzheimer's Disease''
! style="background: green"  | zero rarity
+
! style="background: green"  | zero rarity singleton20
 
|-
 
|-
| T-lymphocytes (T-Cells)
+
| [http://en.wikipedia.org/wiki/T_cell T-lymphocytes] (T-Cells)
 
| ''Indomethacin STIMULATES T-lymphocytes''
 
| ''Indomethacin STIMULATES T-lymphocytes''
 
| ''T-lymphocytes Activity INHIBITS Alzheimer's Disease''
 
| ''T-lymphocytes Activity INHIBITS Alzheimer's Disease''
 
! style="background: green"  | subgraph3
 
! style="background: green"  | subgraph3
|-
 
| Signal Transduction
 
| &nbsp;
 
| &nbsp;
 
! style="background: green"  | subgraph14
 
 
|-
 
|-
 
|}
 
|}
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 5
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 5
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="8" | Estrogen
+
! rowspan="8" | [http://en.wikipedia.org/wiki/Estrogen Estrogen]
! rowspan="8" | Alzheimer’s Disease
+
! rowspan="8" | [http://en.wikipedia.org/wiki/Alzheimer's_disease Alzheimer’s Disease]
 
! rowspan="8" | July 1995
 
! rowspan="8" | July 1995
! rowspan="8" |  Neil R. Smalheiser/Don R. Swanson
+
! rowspan="8" |  Neil R. Smalheiser/Don R. Swanson ([http://www.ncbi.nlm.nih.gov/pubmed/8797484 Pubmed])
| Antioxidant activity
+
| [http://en.wikipedia.org/wiki/Antioxidant Antioxidant activity]
 
| ''Estrogen INHIBITS Antioxidant activity''
 
| ''Estrogen INHIBITS Antioxidant activity''
 
| ''Antioxidant activity CAUSES Alzheimer's Disease''  
 
| ''Antioxidant activity CAUSES Alzheimer's Disease''  
! style="background: green"  | subgraph5
+
! style="background: green"  | subgraph4
 
|-
 
|-
| AlipoproteinE (ApoE)
+
| [http://en.wikipedia.org/wiki/Apolipoprotein_E Alipoprotein E] (ApoE)
 
| ''Estrogen INHIBITS ApoE''
 
| ''Estrogen INHIBITS ApoE''
 
| ''ApoE CAUSES Alzheimer's Disease''  
 
| ''ApoE CAUSES Alzheimer's Disease''  
 
! style="background: green"  | subgraph3
 
! style="background: green"  | subgraph3
 
|-
 
|-
| Calbindin D28k
+
| [http://en.wikipedia.org/wiki/Calbindin#Calbindin-D28k Calbindin D28k]
 
| ''Estrogen REGULATES Calbindin D28k''
 
| ''Estrogen REGULATES Calbindin D28k''
 
| ''Calbindin D28k AFFECTS Alzheimer's Disease''
 
| ''Calbindin D28k AFFECTS Alzheimer's Disease''
! style="background: green"  | subgraph5
+
! style="background: green"  | subgraph4
 
|-
 
|-
| Cathepsin D
+
| [http://en.wikipedia.org/wiki/Cathepsin_D Cathepsin D]
 
| ''Estrogen STIMULATES Cathepsin D''
 
| ''Estrogen STIMULATES Cathepsin D''
 
| ''Cathepsin D PREVENTS Alzheimer's Disease''  
 
| ''Cathepsin D PREVENTS Alzheimer's Disease''  
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Cytochrome C oxidase subunit III
+
| [http://en.wikipedia.org/wiki/Cytochrome_c_oxidase_subunit_III Cytochrome C oxidase subunit III]
 
| ''Estrogen STIMULATES Cytochrome Coxidase subunit III''
 
| ''Estrogen STIMULATES Cytochrome Coxidase subunit III''
 
| ''Cytochrome Coxidase subunit III AFFECTS Alzheimer's Disease''
 
| ''Cytochrome Coxidase subunit III AFFECTS Alzheimer's Disease''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Glutamate
+
| [http://en.wikipedia.org/wiki/Glutamic_acid Glutamate]
 
| ''Estrogen STIMULATES Glutamate''
 
| ''Estrogen STIMULATES Glutamate''
 
| ''Glutamate AFFECTS Alzheimer's Disease''
 
| ''Glutamate AFFECTS Alzheimer's Disease''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
| Receptor Polymorphism
+
| [http://en.wikipedia.org/wiki/Estrogen_receptor Receptor Polymorphism]
| ''Estrogen PRODUCES Receptor Polymorphism''
+
| ''Estrogen EXHIBITS Receptor Polymorphism''
 
| ''Receptor Polymorphism AFFECTS Alzheimer's Disease''
 
| ''Receptor Polymorphism AFFECTS Alzheimer's Disease''
 
! style="background: red"  | &nbsp;
 
! style="background: red"  | &nbsp;
 
|-
 
|-
 
|}
 
|}
 
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 6
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 6
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="8" | Calcium-Independent PLA2
+
! rowspan="8" | [http://en.wikipedia.org/wiki/Phospholipase_A2 Calcium-Independent PLA2]
! rowspan="8" | Schizophrenia
+
! rowspan="8" | [http://en.wikipedia.org/wiki/Schizophrenia Schizophrenia]
 
! rowspan="8" | 1997
 
! rowspan="8" | 1997
! rowspan="8" |  Neil R. Smalheiser/Don R. Swanson
+
! rowspan="8" |  Neil R. Smalheiser/Don R. Swanson ([http://www.ncbi.nlm.nih.gov/pubmed/9707387 Pubmed])
| Oxidative stress
+
| [http://en.wikipedia.org/wiki/Oxidative_stress Oxidative stress]
 
| ''Oxidative Stress INHIBITS Calcium-Independent PLA2''
 
| ''Oxidative Stress INHIBITS Calcium-Independent PLA2''
 
| ''Oxidative stress CAUSES Schizophrenia''
 
| ''Oxidative stress CAUSES Schizophrenia''
! style="background: green"  | subgraph3
+
! style="background: green"  | singleton2
 
|-
 
|-
| Selenium
+
| [http://en.wikipedia.org/wiki/Selenium Selenium]
 
| ''Selenium INHIBITS Calcium-Independent PLA2''
 
| ''Selenium INHIBITS Calcium-Independent PLA2''
 
| ''Selenium PREVENTS Schizophrenia''
 
| ''Selenium PREVENTS Schizophrenia''
! style="background: green"  | subgraph3
+
! style="background: green"  | singleton2
 
|-
 
|-
| Vitamin E
+
| [http://en.wikipedia.org/wiki/Vitamin_E Vitamin E]
| ''Vitamin E STIMULATES Calcium-Independent PLA2''
+
| ''Vitamin E INHIBITS Calcium-Independent PLA2''
 
| ''Vitamin E PREVENTS Schizophrenia''
 
| ''Vitamin E PREVENTS Schizophrenia''
! style="background: green"  | subgraph3
+
! style="background: green"  | singleton2
 
|-
 
|-
 
|}
 
|}
 
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 7
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 7
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
 
! rowspan="8" | [http://en.wikipedia.org/wiki/Chlorpromazine Chlorpromazine]
 
! rowspan="8" | [http://en.wikipedia.org/wiki/Chlorpromazine Chlorpromazine]
! rowspan="8" | [http://en.wikipedia.org/wiki/Ventricular_hypertrophy Cardiac Hypertrophy]
+
! rowspan="8" | [http://en.wikipedia.org/wiki/Ventricular_hypertrophy Cardiac Hypertrophy] ([http://en.wikipedia.org/wiki/Cardiomegaly Cardiomegaly])
 
! rowspan="8" | 2002
 
! rowspan="8" | 2002
 
! rowspan="8" | Jonathan D. Wren ([http://www.ncbi.nlm.nih.gov/pubmed/14960466 PubMed])
 
! rowspan="8" | Jonathan D. Wren ([http://www.ncbi.nlm.nih.gov/pubmed/14960466 PubMed])
Line 403: Line 403:
 
| ''Chlorpromazine INHIBITS Isoproterenol''
 
| ''Chlorpromazine INHIBITS Isoproterenol''
 
| ''Isoproterenol CAUSES Cardiomegaly''
 
| ''Isoproterenol CAUSES Cardiomegaly''
! style="background: green"  | subgraph14
+
! style="background: green"  | subgraph12
 
|-
 
|-
 
|}
 
|}
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 8
 
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 8
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
 
! rowspan="8" | [http://en.wikipedia.org/wiki/Testosterone Testosterone]
 
! rowspan="8" | [http://en.wikipedia.org/wiki/Testosterone Testosterone]
Line 427: Line 425:
 
| ''Testosterone INHIBITS Hydrocortisone''
 
| ''Testosterone INHIBITS Hydrocortisone''
 
| ''Hydrocortisone DISRUPTS Sleep''
 
| ''Hydrocortisone DISRUPTS Sleep''
! style="background: green"  | subgraph10
+
! style="background: green"  | subgraph7
 
|-
 
|-
 
|}
 
|}
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
 
 
 
{| border="1"
 
{| border="1"
 
|-
 
|-
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 8
+
! colspan="4" style="background: #7109AA; color: #ffffff" | Scenario 9
! rowspan="2" style="background: #ffdead;" | Intermediate
+
! rowspan="2" style="background: #6c8cd5;" | Intermediate
! rowspan="2" colspan="2" style="background: #ffdead;" | Association
+
! rowspan="2" colspan="2" style="background: #4671d5;" | Association
! rowspan="2" style="background: #ffdead;" | Status
+
! rowspan="2" style="background: #6a48d7;" | Status
 
|-
 
|-
| Source
+
! colspan = "1"  style = "background: #a069d6" | Source
| Target  
+
! colspan = "1" style = "background: #a069d6" | Target  
| Cut-off Date
+
! colspan = "2" style = "background: #a069d6" | Details
| Researcher
+
 
|-
 
|-
! rowspan="8" | [http://en.wikipedia.org/wiki/Bis(2-ethylhexyl)_phthalate DEHP]
+
! rowspan="8" | [http://en.wikipedia.org/wiki/Bis(2-ethylhexyl)_phthalate Diethylhexyl phthalate] (DEHP)
 
! rowspan="8" | [http://en.wikipedia.org/wiki/Sepsis Sepsis]
 
! rowspan="8" | [http://en.wikipedia.org/wiki/Sepsis Sepsis]
! rowspan="8" | 2011
+
! rowspan="8" | 2013
 
! rowspan="8" |  Michael J. Cairelli/Thomas C. Rindflesch ([http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900170/ PubMed Central])
 
! rowspan="8" |  Michael J. Cairelli/Thomas C. Rindflesch ([http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900170/ PubMed Central])
 
| [http://en.wikipedia.org/wiki/Peroxisome_proliferator-activated_receptor_gamma PParGamma]
 
| [http://en.wikipedia.org/wiki/Peroxisome_proliferator-activated_receptor_gamma PParGamma]
Line 455: Line 450:
 
|-
 
|-
 
|}
 
|}
 +
<br />
 +
 +
=Demos=
 +
'''Web Application:''' http://knoesis-hpco.cs.wright.edu/obvio/ <br />
 +
'''Video Demo:''' http://bit.ly/obviodemo
 
<br />&nbsp;<br />
 
<br />&nbsp;<br />
  
 
=Publications=
 
=Publications=
 
<references/>
 
<references/>
 +
 +
<!--
 +
=Patent=
 +
* [http://knoesis.wright.edu/researchers/delroy/index.html '''D. Cameron'''], [http://knoesis.wright.edu/amit/ A. P. Sheth], [http://www.cs.uky.edu/people/faculty/rkavuluru R. Kavuluru]. System, Method and Knowledge Representation  for Literature-Based Discovery through Context-Driven Automatic Subgraph Creation. <i>(<font color="red">pending</font>)</i>
 +
<br />
 +
-->
  
 
=SWLBD Workshop=
 
=SWLBD Workshop=
Kno.e.sis and the National Library of Medicine (NLM) organized [http://knoesis.org/swlbd2012/ The First International Workshop on the role of Semantic Web in Literature-Based Discovery (SWLBD2012)] in conjunction with [http://knoesis.org/swlbd2012/index.html The IEEE Conference on Bioinformatics and Biomedicine (BIBM2012)] in Philadelphia PA, USA.<br />
+
[http://knoesis.org/ Kno.e.sis] and the [http://www.nlm.nih.gov/ National Library of Medicine (NLM)] organized [http://knoesis.org/swlbd2012/ The First International Workshop on the role of Semantic Web in Literature-Based Discovery (SWLBD2012)] in conjunction with [http://knoesis.org/swlbd2012/index.html The IEEE Conference on Bioinformatics and Biomedicine (BIBM2012)] in Philadelphia PA, USA.<br />
  
 
* Due date for full workshop papers submission: <b>Aug 6, 2012</b>
 
* Due date for full workshop papers submission: <b>Aug 6, 2012</b>
Line 474: Line 480:
 
[http://knoesis.wright.edu/internal/wiki/index.php/Reachability Reachability]<br />
 
[http://knoesis.wright.edu/internal/wiki/index.php/Reachability Reachability]<br />
 
<br />Contact: [http://knoesis.wright.edu/researchers/delroy/ Delroy Cameron]
 
<br />Contact: [http://knoesis.wright.edu/researchers/delroy/ Delroy Cameron]
 +
 +
[[Category:Literature based discovery]]
 +
 +
<!--
 +
 +
Sheth also demonstrated the role of rich representations and semantics in [[Literature-based discovery]]. Through the use of explicit semantics from structured background knowledge, to enrich implicit context from distributional statistics in text corpora, Sheth directed the research in Obvio<ref>{{cite web|url=http://wiki.knoesis.org/index.php/Obvio |title=Obvio |publisher=knoesis.org |date= |accessdate=2014-09-01}}</ref>, which facilitated the rediscovery of 8 out of 9 well-known scientific discoveries. Obvio automatically generates multifaceted complex associations (or subgraphs) between biomedical concepts, based on semantic predications extracted from scientific literature and their substantiation in [[MEDLINE]].
 +
 +
-->

Latest revision as of 14:10, 4 February 2016

Obvio (spanish for obvious) is a graph-based framework for exploring biomedical literature to facilitate Literature-Based Discovery (LBD) based on rich knowledge representations. Its broader goal is to uncover hidden and complex associations between concepts in biomedical texts. To achieve this, Obvio utilizes several tools and resources developed at the National Library of Medicine (NIH-NLM), including MetaMap, SemRep, MEDLINE, SemMedDB, MeSH, UMLS, BKR and the UMLS Semantic Navigator. Obvio has resulted in the rediscovery of 8 out of 9 existing discoveries from scientific literature. The project encapsulates the PhD Dissertation<ref>D. Cameron, A Context-Driven Subgraph Model for Literature-Based Discovery, Ph.D. Thesis, Wright State University, 2014</ref> (video on YouTube) by Delroy Cameron, presented on August 18, 2014.

People

Graduate Students: Delroy Cameron, Swapnil Soni, Nishita Jaykumar, Vishnu Bompally
External Collaborators: Thomas C. Rindflesch, Ramakanth Kavuluru, Olivier Bodenreider
Faculty: Amit P. Sheth (Advisor), Krishnaprasad Thirunarayan
Past Members: Pablo N. Mendes, Tu Danh, Sreeram Vallabhaneni, Hima Yalamanchili, Drashti Dave

PhD Dissertation

Obvio was presented as the core of the PhD Dissertation by Delroy Cameron in the Summer 2014. The dissertation defense (and dissertation proposal) videos are available on YouTube. The dissertation presentation is also available on SlideShare.


Overview

Obvio is driven by assertions extracted from biomedical literature (called semantic predications) as well as statements obtained from structured knowledge sources (such as the UMLS and MeSH). Semantic predications are extracted from MEDLINE using SemRep and made publicly available through the Semantic MEDLINE Database (SemMedDB). These semantic predications can be used for various tasks. Some of these include: 1) Information Retrieval; 2) Question Answering (QA); 3) Document Summarization and 4) Literature-Based Discovery (LBD). Obvio uses the semantic predications specifically for Question Answering and LBD.

Question Answering

Reachability

Semantic predications were first used in Obvio for biomedical QA based on data from the 2006 TREC Challenge. The approach was based on the notion of reachability, to determine whether documents that answer complex biomedical questions could be meaningfully connected using assertions from the literature. Structured background knowledge was used to gain additional insights to connect biomedical texts, when semantic predications alone proved insufficient. The presentation below, together with our paper<ref>D. Cameron, R. Kavuluru, O. Bodenreider, P. N. Mendes, A. P. Sheth, K. Thirunarayan, Semantic Predications for Complex Information Needs in Biomedical Literature, 5th International Conference on Bioinformatics and Biomedicine (BIBM2011), Atlanta GA, November 12-15, 2011 (acceptance rate=19.4%)</ref> in BIBM 2011 on applying predications and background knowledge for QA, provide more details on this approach.

Literature-Based Discovery (LBD)

Rediscovery

The semantic predications were subsequently used for Literature-based Discovery (LBD). Specifically, they were used to determine whether existing knowledge from scientific literature, could be effectively recovered. We developed a graph-based approach that was successfully applied to rediscover and decompose Don R. Swanson's Raynaud Syndrome - Dietary Fish Oils Hypothesis (RS-DFO) from 1986. Much of the early research aimed at rediscovering Swanson's Hypotheses focused on distributional statistics and Information Retrieval (IR) techniques, such as term and concept co-occurrence to find intermediates. Only recently has significant attention been devoted to semantics-based techniques that exploit the meaning of associations between concepts. While generally more intuitive, the feasibility of such semantics-based approaches has not been fully established. Our article published in JBI<ref>D. Cameron, O. Bodenreider, H. Yalamanchili, T. Danh, S. Vallabhaneni, K. Thirunarayan, A. P. Sheth, T. C. Rindflesch, A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications, Journal of Biomedical Informatics 46(2): 238-251, (2013). ScienceDirect, PMID </ref> shows that semantics-based techniques can effectively be used for recovering and decomposing Swanson's Raynaud Syndrome-Fish Oil hypothesis using semantic predications, background knowledge and graph algorithms. It is reasonable to expect that if semantics-based techniques are adequate for rediscovering existing knowledge, they ought to be sufficient for discovering new knowledge.

RS-DFO Hypothesis

The following presentation gives more details about the approach for knowledge rediscovery and decomposition. Various datasets and experimental results are also provided.

Datasets and Experimental Results
  1. Dataset
    1. Baseline (B1)
      1. Original PDFs of the 65 articles cited by Swanson's RS-DFO paper (30.5MB)
      2. ASCII text with end-of-line text wrapping fixed
      3. Text in Medline format for parsing by SemRep
      4. SemRep Relations Output
      5. SemRep Relations Output (vascular reactivity)
      6. SemRep Extracted Predications
      7. Manually Identified Predications (vascular reactivity)
    2. Baseline (B2)
      1. Titles and abstracts of the 65 articles cited by Swanson's RS-DFO paper in Medline format for parsing by SemRep
      2. SemRep Relations Output
      3. SemRep Relations Output (vascular reactivity)
      4. SemRep Extracted Predications
      5. Manually Identified Predications (vascular reactivity)
  2. Experimental Results
    1. Association-Subgraph Comparisons (Experiment I)
    2. Association-Subgraph Comparisons (Experiment II)
    3. All Generated Subgraphs (Experiments 1 & 2)


The main limitation of the approach for rediscovery and decomposition using semantic predications is that subgraphs were created manually. An approach to automatically cluster paths based on a specification of context, was developed. The next section provides details on this approach for automatic subgraph creation.

Automatic Subgraph Creation

Following our experiments on knowledge rediscovery, the semantic predications were used to automatically generate subgraphs, which capture complex associations between two concepts<ref>D. Cameron, R. Kavuluru, T. C. Rindflesch, A. P. Sheth, K. Thirunarayan, O. Bodenreider, Context-Driven Automatic Subgraph Creation for Literature-Based Discovery. Journal of Biomedical Informatics 54: 141-157 (2015) </ref> (i.e., closed discovery). We developed a method that creates complex associations in the form of subgraphs along different thematic dimensions of association between such concepts. The generated subgraphs were shown to facilitate the rediscovery of 8 out of 9 existing scientific discoveries, including the RS-DFO scenarios from our article in JBI. Each rediscovery scenario is covered in detail in the following tables. The associations from each subgraph in each rediscovery scenario, can be explored using our live web application: http://knoesis-hpco.cs.wright.edu/obvio/ and a video demo is also available online.

Legend

  Not Found
  Found
subgraph x x (subgraph number)
singleton y y (singleton number), where a singleton is a subgraph consisting of only one path
zero rarity singleton a single-path subgraph (or singleton) whose concepts never occur together in any article in MEDLINE


Scenario 1 Intermediate Association Status
Source Target Details
Dietary Fish Oils Raynaud Syndrome Cut-off Date: November 1985

By: Don R. Swanson
Article: (PubMed)

Blood Viscosity Dietary Fish Oils INHIBITS Blood Viscosity Blood Viscosity CAUSES Raynaud Syndrome zero rarity singleton15
Platelet Aggregation Dietary Fish Oils INHIBITS Platelet Aggregation Platelet Aggregation CAUSES Raynaud Syndrome subgraph1
Vascular Reactivity Dietary Fish Oils INHIBITS Vasoconstriction Vasoconstriction CAUSES Raynaud Syndrome  


 

Scenario 2 Intermediate Association Status
Source Target Details
Magnesium Migraine Cut-off Date: April 1987

By: Don R. Swanson
Article: (Pubmed Central)

Calcium Channel Blockers Magnesium ISA Calcium Channel Blocker Calcium Channel Blockers TREATS Migraine subgraph22
Epilepsy Magnesium AFFECTS Epilepsy Epilepsy COEXISTS_WITH Migraine subgraph9
Hypoxia Magnesium INHIBITS Hypoxia Hypoxia ASSOCIATED_WITH Migraine  
Inflammation (Brain Edema, Hydrocephalus) Magnesium INHIBITS Inflammation Inflammation CAUSES Migraine zero rarity singleton3
Platelet Activity Magnesium INHIBITS Platelet Aggregation Platelet Aggregation CAUSES Migraine subgraph1
Prostaglandins Magnesium STIMULATES Prostaglandins Prostaglandins DISRUPTS Migraine Disorders subgraph4
Stress/Type A Personality Stress INHIBITS Magnesium Stress ASSOCIATED_WITH Migraine  
Serotonin Magnesium INHIBITS Serotonin Serotonin CAUSES Migraine subgraph1
Cortical Depression Magnesium INHIBITS Spreading Cortical Depression Spreading Cortical Depression CAUSES Migraine  
Substance P Magnesium INHIBITS Substance P Substance P CAUSES Migraine  
Vascular Mechanisms Magnesium INHIBITS Vasoconstriction Vasoconstriction CAUSES Migraine subgraph9


 

Scenario 3 Intermediate Association Status
Source Target Details
Somatomedin C Arginine April 1989 Don R. Swanson (Pubmed Central) Growth Hormone Arginine STIMULATES Growth Hormone Growth Hormone STIMULATES Somatomedins subgraph5
Body Weight (body mass) Somatomedins (IGF1) STIMULATES Growth Arginine STIMULATES Growth subgraph7
Malnutrition Somatomedins TREATS Malnutrition Arginine TREATS Malnutrition subgraph7
Wound Healing (NK activity) Somatomedin STIMULATES Wound Healing Arginine STIMULATES Wound Healing  


 

Scenario 4 Intermediate Association Status
Source Target Details
Indomethacin Alzheimer’s Disease July 1995 Neil R. Smalheiser/Don R. Swanson (J. Neurol) Acetylcholine Indomethacin INHIBITS Acetylcholine Acetylcholine CAUSES Alzheimer's Disease subgraph4
Lipid peroxidation Indomethacin INHIBITS Lipid peroxidation Lipid peroxidation CAUSES Alzheimer's Disease subgraph2
M2-muscarinic Indomethacin INHIBITS M2-muscarinic M2-muscarinic CAUSES Alzheimer's Disease  
Membrane Fluidity Indomethacin INHIBITS Membrane Fluidity Membrane Fluidity CAUSES Alzheimer's Disease  
Lymphocytes Indomethacin STIMULATES natural killer T-Cell Activity T-Cell Activity INHIBITS Alzheimer's Disease subgraph14
Thyrotropin Indomethacin STIMULATES Thyrotropin Thyrotropin AFFECTS Alzheimer's Disease zero rarity singleton20
T-lymphocytes (T-Cells) Indomethacin STIMULATES T-lymphocytes T-lymphocytes Activity INHIBITS Alzheimer's Disease subgraph3


 

Scenario 5 Intermediate Association Status
Source Target Details
Estrogen Alzheimer’s Disease July 1995 Neil R. Smalheiser/Don R. Swanson (Pubmed) Antioxidant activity Estrogen INHIBITS Antioxidant activity Antioxidant activity CAUSES Alzheimer's Disease subgraph4
Alipoprotein E (ApoE) Estrogen INHIBITS ApoE ApoE CAUSES Alzheimer's Disease subgraph3
Calbindin D28k Estrogen REGULATES Calbindin D28k Calbindin D28k AFFECTS Alzheimer's Disease subgraph4
Cathepsin D Estrogen STIMULATES Cathepsin D Cathepsin D PREVENTS Alzheimer's Disease  
Cytochrome C oxidase subunit III Estrogen STIMULATES Cytochrome Coxidase subunit III Cytochrome Coxidase subunit III AFFECTS Alzheimer's Disease  
Glutamate Estrogen STIMULATES Glutamate Glutamate AFFECTS Alzheimer's Disease  
Receptor Polymorphism Estrogen EXHIBITS Receptor Polymorphism Receptor Polymorphism AFFECTS Alzheimer's Disease  


 

Scenario 6 Intermediate Association Status
Source Target Details
Calcium-Independent PLA2 Schizophrenia 1997 Neil R. Smalheiser/Don R. Swanson (Pubmed) Oxidative stress Oxidative Stress INHIBITS Calcium-Independent PLA2 Oxidative stress CAUSES Schizophrenia singleton2
Selenium Selenium INHIBITS Calcium-Independent PLA2 Selenium PREVENTS Schizophrenia singleton2
Vitamin E Vitamin E INHIBITS Calcium-Independent PLA2 Vitamin E PREVENTS Schizophrenia singleton2


 

Scenario 7 Intermediate Association Status
Source Target Details
Chlorpromazine Cardiac Hypertrophy (Cardiomegaly) 2002 Jonathan D. Wren (PubMed) Calcineurin Chlorpromazine INHIBITS Calcineurin Calcineurin CAUSES Cardiac Hypertrophy subgraph5
Isoproterenol Chlorpromazine INHIBITS Isoproterenol Isoproterenol CAUSES Cardiomegaly subgraph12


 

Scenario 8 Intermediate Association Status
Source Target Details
Testosterone Sleep 2011 Christopher M. Miller/Thomas C. Rindflesch (PubMed) Cortisol/Hydrocortisone Testosterone INHIBITS Hydrocortisone Hydrocortisone DISRUPTS Sleep subgraph7


 

Scenario 9 Intermediate Association Status
Source Target Details
Diethylhexyl phthalate (DEHP) Sepsis 2013 Michael J. Cairelli/Thomas C. Rindflesch (PubMed Central) PParGamma DEHP STIMULATES PParGamma PParGamma INHIBITS Sepsis  


Demos

Web Application: http://knoesis-hpco.cs.wright.edu/obvio/
Video Demo: http://bit.ly/obviodemo
 

Publications

<references/>


SWLBD Workshop

Kno.e.sis and the National Library of Medicine (NLM) organized The First International Workshop on the role of Semantic Web in Literature-Based Discovery (SWLBD2012) in conjunction with The IEEE Conference on Bioinformatics and Biomedicine (BIBM2012) in Philadelphia PA, USA.

  • Due date for full workshop papers submission: Aug 6, 2012
  • Notification of paper acceptance to authors: August 28, 2012
  • Camera-ready version of accepted papers: September 4, 2012
  • Workshop: October 4, 2012

Internal

Obvio Web App
Automatic Subgraph Creation
Recovery and Decomposition
Reachability

Contact: Delroy Cameron